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Abstract. We investigate the phase of the transmission peaks of electrons in a single-channel
system with a quantum dot embedded between the leads. The quantum dot is modelled by a tight-
binding Hamiltonian of a cluster of a two- or three-dimensional lattice which is connected with
one-dimensional leads. We derive an exact expression which relates the transmission amplitude
to the bound states of the dot. It is confirmed that the abrupt phase changes in the transmission
amplitude are associated with the transmission peaks and zeros. The phase at the resonance peaks is
related to the parity of the corresponding bound states of the dot. On the basis of the exact expression
a possible explanation of the in-phase features discovered in the experiments is presented.

1. Introduction

The transport properties of electronic devices are usually characterized on the basis of
conductance measurements which explore the relationship between the current and the applied
bias voltage. However, for mesoscopic systems, such as quantum dots [1, 2], whose size is
comparable with the wavelength of the wavefunctions of the electrons, the magnitude of the
conductance is not sufficient for describing the transport properties because the wave nature
of the electrons plays an important role in this case [3, 4]. In 1995, Yacoby et al reported
the first measurement of the phase change of electrons in transmission through a quantum
dot by using the interference in an Aharonov–Bohm (AB) ring threaded with a magnetic
flux [3]. The quantum dot is embedded in an arm of the AB ring and the phase of electrons
transmitted through the dot is determined from the relative phase of the AB oscillation. In
the experiment two main features were observed: the AB oscillations have the same phase
at the successive conductance peaks, and the phase changes abruptly by π when the dot
potential scans through a single resonance peak. Since then, great efforts have been made to
explain these features [5–9]. Further experimental investigations revealed more details about
the phase of the electron transport through a dot [4, 10]. Theoretically, it has been shown
that there should be a phase change of π for every conductance peak, but another feature—
that the consecutive peaks are in phase—is not well understood yet [4]. In reference [9] the
transmission properties of electrons were investigated by the use of the one-dimensional (1D)
non-interacting model, and the in-phase feature observed in the experiments was attributed to
the effect of interference between two AB arms. Another theory based on the Friedel sum rule
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was presented in reference [11]. This theory tries to find a solution of the problem from a new
viewpoint. One of the observations is that the 1D Friedel sum rule

�Q/e = � arg(t)/π (1)

(where Q is the charge tunnelling through the dot and t is the transmission amplitude) is
not strictly valid for quasi-1D systems due to the appearance of the transmission zeros. One
immediate consequence is that there are two possibilities for adjacent resonances. They can
be either out of phase by π or in phase, and in the latter case a transmission zero occurs in
between. The theory also studies how the wavefunction nodes of the quasibound states of the
dot affect the phase of the transmission amplitude. It predicts that the ‘spanning’ nodes which
connect two opposite boundaries of the dot shift the phase byπ , while the ‘non-spanning’ nodes
which touch either only one boundary or no boundary at all do not alter the phase. This theory
demonstrates that both in-phase and out-of-phase-by-π features for the consecutive resonances
are possible, but it cannot explain the in-phase behaviour of a long series of resonances observed
in the experiments.

In this paper we present a rigorous expression which relates the amplitude of transmission
of electrons through the dot and the wavefunctions of the bound states. In the derivation the
leads are modelled with a 1D tight-binding Hamiltonian but the dot is represented by a 2D or
3D cluster with any shape. It is found that the phase of the transmission amplitude is closely
related to the symmetry of the bound states of the dot and the coupling between the leads and
the dot. The out-of-phase resonance peaks are suppressed if the dot is small enough and the
coupling between the leads and the dot has a long-range feature in comparison with the dot
size. This results in in-phase behaviour for the consecutive peaks in a long series and provides
a possible explanation of the experiments.

The paper is organized as follows: in the next section the model used to investigate the
tunnelling through the dot is described; in the third section the expression for the transmission
amplitude is derived; in the fourth section the calculated results for 2D and 3D dots with
different shapes are presented; the last section is devoted to a brief summary of the conclusions.

2. The model

We study a tight-binding model of a quantum dot embedded between two leads. The leads
are represented by 1D chains while the dot is a 2D or 3D cluster with arbitrary shape. The
Hamiltonian can be written as

H = Hd + Hl + Hc (2)

where Hd , Hl , and Hc are the sub-Hamiltonians for the dot, the leads, and the coupling
between them, respectively. In a tight-binding scheme they can be written as

Hd =
∑
i∈D
(V + εi)d

†
i di − td

∑
〈ij〉∈D

d
†
i dj (3)

Hl = −t0
∑

m �=−1,0

(c†
mcm+1 + H.c.) (4)

Hc = −
∑
i∈D
(t−1,ic

†
−1di + t1,ic

†
1di + H.c.) (5)

where cm and di are annihilation operators of electrons at themth site of the leads and at the ith
site of the dot, t0 and td are nearest-neighbour hoppings in the leads and the dot, respectively,
t−1,i and t1,i are the couplings between the contact points in the leads (m = −1, 1) and the
sites on the dot, εi is the site energy at the ith site of the dot, V is the dot potential induced
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by the gate voltage. Here m is the 1D coordinate of the sites in the leads, and the dot is at
coordinatem = 0. D denotes the set of sites of the dot. Owing to the small size of the dot, the
couplings between the contact points of leads and all the sites of the dot are taken into account.
The transmission of electrons through the dot is strongly dependent on the dot bound states
and the couplings between leads and dot.

In the experiments of Yacoby et al [3] the dot is embedded in one arm of an AB ring
through which a magnetic flux is applied to measure the phase difference between the two
arms caused by the dot. In this case the sub-Hamiltonian Hl is changed to

Hl = −t0
[( −2∑

m=−L+1

+
L−2∑
m=1

)
c†mcm+1 +

L−2∑
m=−L+1

c
†
1,mc1,m+1 +

( −L−1∑
m=−∞

+
∞∑
m=L

)
c

†
0,mc0,m+1 + H.c.

]

− t0(c
†
0,−Lc−L+1 + c†

0,−Lc1,−L+1 + c†
L−1c0,L + c†

1,L−1c0,L + H.c.) (6)

and the hopping integral t−1,i in equation (5) is changed to t−1,i exp(iφ), where c0,m and c1,m

are annihilation operators of electrons at the mth site outside the AB ring and in the arm
without the dot of the ring, respectively, 2L is the length of one arm, and φ is the flux through
the ring. Here we use a gauge where the phase of hopping integrals caused by the flux appears
only in an extremal bond connected to the dot.

3. The formula for the transmission amplitude

The flux dependence of the transmission through the AB ring with a dot embedded in an arm
is governed by the quantum interference of the two arms where the phase difference caused by
the dot plays a dominant role. At first, we calculate the transmission and reflection amplitudes
of electrons at the dot embedded in a single chain. From these results we can calculate the
transmission through the AB ring. In the one-chain Hamiltonian equation (2), sub-Hamiltonian
Hd can be diagonalized to obtain the energy levels {Ej } and the wavefunctions {φj } of the
bound states of dot. φj can be expressed as a linear combination of the site states:

φj =
∑
i∈D

bjid
†
i |0〉 (7)

with |0〉 being the vacuum. On the basis of these states, the one-chain Hamiltonian can be
rewritten as

H = Hl +
∑
j

[Eja
†
j aj − (tLj c

†
−1aj + tRj c

†
1aj + H.c.)] (8)

where aj is the annihilation operator of electron in state φj , and

t
L (R)
j =

∑
i∈D

bji t−1 (1),i . (9)

We consider that a plane wave is incident from the left-hand lead. In this case the wave-
function of the tunnelling electron is

ψ =
∑
m�−1

(eik(m+1) + re−ik(m+1))c†
m|0〉 +

∑
m�1

teik(m−1)c†
m|0〉 +

∑
j

ξj a
†
j |0〉 (10)

where t and r are the amplitudes of transmitted and reflected waves, respectively, ξj is the
amplitude in the j th bound state of the dot, and k is the wave vector of the incident wave
satisfying E = −2t0 cos k with E being the energy. By applying Hamiltonian (8) to this
wavefunction, one obtains the following equations for t , r , and ξj :

Eξj = Ejξj − tL∗
j (1 + r)− tR∗

j t for all j (11)
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E(1 + r) = −t0(e−ik + reik)−
∑
j

tLj ξj (12)

Et = −t0eik −
∑
j

tRj ξj . (13)

By solving these equations we obtain the transmission and reflection amplitudes:

t = 2it0QLR sin k

[t0 exp(−ik) +QRR][t0 exp(−ik) +QLL] − |QLR|2 (14)

r = − 2it0[QRR + t0 exp(−ik)] sin k

[t0 exp(−ik) +QRR][t0 exp(−ik) +QLL] − |QLR|2 − 1 (15)

where

Qλλ′ =
∑
j

tλ∗j t
λ′
j

E − Ej
.

It can be seen that at the resonances (E = Ej ) the transmission amplitude is

t (E)
∣∣
E=Ej = 2it0t

R
j t

L∗
j sin k

/(
t0e−ik(|tLj |2 + |tRj |2) +

∑
j ′ �=j

|tLj ′ t
R
j − tRj ′ t

L
j |2

Ej − Ej ′

)
. (16)

At the weak-coupling limit, |tRj tLj |  |t0(Ej − Ej ′)|, one has

t (E)
∣∣
E=Ej ∼ 2itRj t

L∗
j sin k

e−ik(|tLj |2 + |tRj |2) . (17)

This means that in this case the intensity of the resonance peaks is only dependent on the
lead–dot coupling. On the other hand, if the level spacing is small compared with |tRj tLj /t0|,
the intensity of the peaks is influenced by the nearby resonance levels. In particular, if the
bound states of two adjacent levelsEj andEj ′ have opposite (or near opposite) parity, with the
result that |tLj ′ t

R
j − tRj ′ t

L
j | � |(Ej −Ej ′)t0|, then the corresponding transmission peaks will be

drastically suppressed. In spite of the different peak values at the resonances, the transmission
amplitude changes sign when sweeping through a resonance, leading to an abrupt jump of
phase by π .

If Hd is a real symmetric matrix, tRj and tLj are also real. If tRj t
L
j and tRj ′ t

L
j ′ have the same

sign for two adjacent levels Ej and Ej ′ , QLR changes sign when E sweeps from Ej to Ej ′ .
This results in a transmission zero in between. This is the same as the conclusion derived
from the Friedel sum rule [11], but now it is expressed with an analytic formula. Since the
transmission amplitude changes sign at the transmission zero, the phase will also jump by π
at that point, leading to the in-phase feature of the resonance peaks at adjacent resonances Ej
and Ej ′ . On the other hand, there is no transmission zero in between if tRj t

L
j and tRj ′ t

L
j ′ have

opposite signs, leading to an out-of-phase feature for adjacent levels Ej and Ej ′ .
Now we come to the conclusion that the in-phase feature for two adjacent levels occurs

only if tRj t
L
j has the same sign for them. If the in-phase feature appears in a long series of

the resonances, the only reasonable explanation is that tRj t
L
j has the same sign for all of them.

However, this could not be satisfied by the bound states of a dot. In fact, if the dot is modelled
by a 1D chain, tRj t

L
j will change sign alternately when varying the energy. A possible solution

for this is that the peaks of different sign of tRj t
L
j are effectively suppressed. This is indeed the

case if the dot is small enough and the hoppings between the contact points of the leads and
the sites of the dot are of long range compared with the size. In particular, if

t−1,i = t1,i = t ′ for all i ∈ D (18)
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and the system has reflection symmetry about the centre of the dot, a bound state, φj , has
odd or even parity and the tL (R)j in equation (9) are non-zero only for φj with even parity. In
this case all the out-of-phase peaks are completely suppressed. In the next section we will
present calculated results for transmission amplitudes for several 2D and 3D samples with
more general parameters.

From the t and r obtained for the dot, one can calculate the gross transmission of the AB
ring. We denote the chain segments of the left lead, right lead, arm of ring without dot, left
branch of arm with dot, and right branch of arm with dot as S1, S2, S3, S4, and S5, respectively.
Since they are uniform chain segments, the coefficients of the wavefunction for them are
described with amplitudes of forward and backward plane waves Aj and Bj , with j from 1 to
5. From the Hamiltonian one has equations for them:

A5 = A4/t
∗ − r∗B4/t

∗ B5 = −rA4/t + B4/t (19)

A4e−ik(L−1) + B4eik(L−1) = A3 + B3 = A1 + B1 (20)

A5eik(L−1) + B5e−ik(L−1) = A3e2ikL + B3e−2ikL = A2 + B2 (21)

E(A1 + B1) = −t0(A1e−ik + B1eik + A3eik + B3e−ik + A4e−ik(L−2) + B4eik(L−2)) (22)

E(A2 + B2) = −t0(A2eik + B2e−ik + A3eik(2L−1) + B3e−ik(2L−1) + A5eik(L−2) + B5e−ik(L−2)).

(23)

By setting A1 = 1, B2 = 0, B1 = rg , and A2 = tg , we can solve from these equations the
gross transmission amplitude tg . Note that in the presence of the magnetic flux, tLj in equation
(9) becomes tLj eiφ . At the resonance of the tunnelling of the dot, |t | ∼ 1 and r ∼ 0, so one
has t ∼ eiφ0−iφ where φ0 is the phase shift produced by the dot in the absence of flux. By
tuning the flux φ, the phase shift φ0 can be compensated to get a constructive interference in
the AB ring. In this way one can get information on the dot phase shift φ0 by measuring the
compensating flux at the resonances.

4. Calculated transmission amplitudes of 2D and 3D samples

For a dot of any shape and potential profile, Hd can be numerically diagonalized. From the
eigenvalues and eigenfunctions obtained one can calculate the transmission amplitude from
equation (14).

First we consider a 2D round dot with radius R0. The hoppings between the leads and
the dot are described by equation (18). In figure 1 we plot the calculated magnitude (|t |2)
and the phase (arg(t)) of the transmission amplitude. It can be seen that in this case all of the
out-of-phase peaks are completely suppressed. The phase changes by π at the peaks and all
the peaks have the same phase. The same calculations are done for a 3D sphere dot and the
results are shown in figure 2. The hoppings between the leads and the dot are still of the form
of equation (18). It can be seen that in this case the in-plane feature of the resonances remains.
The peaks are denser in the 3D case due to the increase of the number of dot states.

Secondly we consider the case where the hoppings between the lead contact points and
the sites of dots are exponentially decreased with increasing distance:

tm,i = t ′′ exp(−rm,i/r0) for m = −1, 1 (24)

where rm,i is the distance between contact pointm and dot site i, and r0 is the damping length.
The transmission coefficient and the phase calculated from equation (24) for a 2D round dot
and a 3D spherical dot are shown in figures 3 and 4, respectively. It can be seen that in this
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Figure 1. The transmission coefficient |t |2 and the phase of the transmission amplitude arg(t)
as functions of the dot potential V for a 2D round dot with radius R0 = 4 lattice spacing. The
couplings between the leads and the dot are described by equation (18) with t ′ = 0.06t0. The other
parameters are E = 0, td = t0.

Figure 2. |t |2 and arg(t) as functions of the dot potential V for a 3D spherical dot with radius
R0 = 3 lattice spacing. The other parameters are the same as for figure 1.
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Figure 3. |t |2 and arg(t) as functions of the dot potential V for a 2D round dot with radius R0 = 4
lattice spacing. The couplings between the leads and the dot are described by equation (24) with
t ′′ = 0.12t0 and r0 = 3 as the lattice spacing. The other parameters are the same as for figure 1.

Figure 4. |t |2 and arg(t) as functions of the dot potential V for a 3D spherical dot with radius
R0 = 3 lattice spacing. The other parameters are the same as for figure 3.



4966 Tao Chen et al

case the phase jumps at the peaks more abruptly; out-of-phase peaks appear, but they are still
remarkably suppressed compared with the in-phase peaks.

Now we consider the case where the reflection symmetry is broken. This is realized by
introducing site-energy fluctuations in the dot. The calculated transmission coefficient and
the phase calculated for the 2D round dot and 3D spherical dot are shown in figures 5 and 6,
respectively. The hoppings between the leads and the dot are of the form of equation (18). We
can see that in this case the peaks have almost the same phase. However, there appear slight
fluctuations of the peak phase, reflecting the randomness of the site energy.

Figure 5. |t |2 and arg(t) as functions of the dot potential V for a 2D round dot with radius R0 = 4
lattice spacing. The couplings between the leads and the dot are described by equation (18) with
t ′ = 0.06t0. The site energies of dots are randomly distributed between −0.5t0 and 0.5t0. The
other parameters are the same as for figure 1.

At finite temperatures, the measurable quantity is the conductance through the AB ring,
and information on the transmission phase shift of the dot is obtained from the compensating
flux. From the Landauer formula one can calculate the conductance as

G(T ) = −e
2

h

∫
dE

∑
O
FO(T )

∂f (E, T )

∂E
|t (O)g (E)|2 (25)

where f is the Fermi distribution of free electrons in the leads:

f (E, T ) = 1

1 + e(E−µ)/(kBT ) .

Also, FO(T ) is the thermal probability of the dot state with occupied levels of set O:

FO(T ) =
∏
j∈O

1

1 + e(Ej−µ)/(kBT )
(26)

where µ is the chemical potential, and t (O)g (E) is the gross transmission amplitude of the ring
calculated from the equations of the last section, but level index j in equations (11), (12), and
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Figure 6. |t |2 and arg(t) as functions of the dot potential V for a 3D spherical dot with radius
R0 = 3 lattice spacing. The other parameters are the same as for figure 5.

(13) is for the empty levels outside set O. Here we omit the spin index. From the thermal
distribution it can be seen that the behaviour of the transmission peaks and compensating
flux is still described by the transmission amplitude t if kBT is much smaller than the level
spacing. If the temperature is too high, the transmission resonances of the dot and the quantum
interference of the ring will be destroyed by the thermal fluctuations.

5. Conclusions

From a tight-binding single-electron Hamiltonian we derive a rigorous expression which relates
the amplitude of transmission of electrons through the dot and the wavefunctions of the bound
states. In the derivation the leads are modelled with a 1D tight-binding Hamiltonian but the
dot is represented by a 2D or 3D cluster with any shape. It is confirmed that the abrupt phase
changes in the transmission amplitude are associated with the transmission peaks and zeros.
The phase at the resonance peaks is related to the parity of the corresponding bound states of
the dot. It is found that the out-of-phase resonance peaks are suppressed if the dot is small
enough and the coupling between the leads and the dot has a long-range feature in comparison
with the dot size. This results in the in-phase behaviour for the consecutive peaks in a long
series and provides a possible explanation for the phenomena observed in experiments.
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[5] Yeyati A L and Büttiker M 1995 Phys. Rev. B 52 14 360
[6] Hackenbrich G and Weidenmüller H A 1996 Phys. Rev. Lett. 76 110
[7] Bruder C, Fazio R and Schoeller H 1996 Phys. Rev. Lett. 76 114
[8] Deo P S and Jayannavar A M 1996 Mod. Phys. Lett. B 10 787
[9] Wu Jian, Gu Bing-Lin, Chen Hao, Duan Wenhui and Kawazoe Y 1998 Phys. Rev. Lett. 80 1952

[10] Buks E, Schuster R, Heiblum M, Mahalu D, Umsndky V and Shtrikman H 1996 Phys. Rev. Lett. 77 4664
[11] Lee H-W 1999 Preprint cond-mat/9902160


